Abstract
This process matches a CV’s education-related input with a particular education field as defined by ESCO. Each free-text token is matched with two vocabularies: one based on education field, and another based on specific ESCO qualifications. The process is language-agnostic and applied for the top 7 languages appearing in the JSON CVs. The large amount of data, the multilingual nature of the problem and the high computational complexity demands scalable solutions. A low-level implementation in C is used for matching and all intensive calculations are parallelized.# http://rmarkdown.rstudio.com/html_document_format.htm
sourceTimeNeeded <- c(0);
source.starting.time <- proc.time()[3]
Information about the libraries, environment, sources used and their execution is reported. Aditional information is provided within section tabs. Navigating through the report is also possible through the table of contents. Tables reported, can be dynamically filtered, searched ordered and exported into various formats.
librariesVersion <- c()
for(i in 1:length(libraries))
librariesVersion <- c(librariesVersion, paste(packageVersion(libraries[i] )))
librariesLoaded <- lapply(libraries, require, character.only = TRUE)
## Loading required package: magrittr
## Loading required package: DT
## Loading required package: text2vec
## Loading required package: stringdist
##
## Attaching package: 'stringdist'
## The following object is masked from 'package:magrittr':
##
## extract
## Loading required package: parallel
## Loading required package: stopwords
../00.core/00.01.libraries.R completed in 1.7 seconds
sourceTimeNeeded <- c( sourceTimeNeeded, timeNeeded)
source.starting.time <- proc.time()[3]
## Base functions
# EPAS-DS
# @authors ds@eworx.gr
repository <- "/data/generic/"
getSourcePath <- function(filename, baseFolder = repository){
return(paste(baseFolder, filename, sep = ""))
}
readData <- function(filename, colClasses = c(), baseFolder = repository, header = TRUE, sep = "\t", encoding = "UTF-8", stringsAsFactors = TRUE, na.strings = c("", "NULL"), verbose = FALSE){
if(length(colClasses) == 0)
return (data.table::fread(input = getSourcePath(filename, baseFolder), header = header, sep = sep, encoding = encoding, stringsAsFactors = stringsAsFactors, verbose = verbose, showProgress = TRUE, na.strings = na.strings ) )
return (data.table::fread(input = getSourcePath(filename, baseFolder), colClasses = colClasses, header = header, sep = sep, encoding = encoding, verbose = verbose, showProgress = TRUE, na.strings = na.strings ) )
}
#rds for small disk space & fst for fast load
saveBinary <- function(data, filename = filename, baseFolder = repository, format = "rds"){
fileName <- getSourcePath(filename, baseFolder)
dir.create(dirname(fileName), recursive = TRUE, showWarnings = FALSE)
if(format == "rds") saveRDS(data, fileName)
if(format == "fst") fst::write_fst(data, fileName)
}
#alternative for rough read write operations
saveRDS_ <- function(object, file){
dir.create(dirname(file), recursive = TRUE, showWarnings = FALSE)
saveRDS(object, file)
}
#rds for small disk space & fst for fast load
loadBinary <- function(filename, baseFolder = repository, format = "rds", as.data.table = TRUE){
if(format == "rds"){return(readRDS(getSourcePath(filename, baseFolder)))}
if(format == "fst"){return(fst::read_fst(getSourcePath(filename, baseFolder), as.data.table = as.data.table))}
}
rowColumns <- function(data){
return(paste( format(nrow(data), big.mark=","), "Rows X ", ncol(data), "Columns"))
}
publishIncludeCss <- function(){
sourceFile <- "/data/jobs/wp41.analysis/000.core/include.css"
destinatinoFile <- "/data/tmpfs/results/include.css"
if (!file.exists(destinatinoFile)) {
return (file.copy(sourceFile, destinatinoFile))
}else{
return(TRUE);
}
}
#as the mountstorage is on memory make sure the asset include.css is there.
summariseTable <- function(data){
return(data.frame(unclass(summary(data)), check.names = FALSE, stringsAsFactors = FALSE))
#return(do.call(cbind, lapply(data, summary)))
}
factoriseCharacterColumns <- function(data){
for(name in names(data)){
if( class(data[[name]]) =="character"){
data[[name]] <- as.factor(data[[name]])
}
}
return(data)
}
############################
# https://rstudio.github.io/DT/010-style.html
#https://rpubs.com/marschmi/RMarkdown
capitalise <- function(x) paste0(toupper(substring(x, 1, 1)), substring(x, 2, nchar(x)))
styliseDTNumericalColumn <- function(data, result, columnName, color, columnsName_original ){
if(columnName%in% columnsName_original){
result <- result %>% formatStyle(
columnName,
background = styleColorBar(data[[columnName]], color),
backgroundSize = '100% 90%',
backgroundRepeat = 'no-repeat',
backgroundPosition = 'center'
)
}
return(result)
}
reportTabularData <- function(data){
columnsName <- names(data)
columnsName <- lapply(columnsName, capitalise)
columnsName_original <- names(data)
result <-
DT::datatable(
data,
class = 'cell-border stripe',
filter = 'top',
rownames = FALSE,
colnames = columnsName,
extensions = 'Buttons',
options = list(
pageLength = 20,
columnDefs = list(list(className = 'dt-left', targets = "_all")),
dom = 'Bfrtip',
buttons = c('copy', 'csv', 'excel', 'pdf'),
searchHighlight = TRUE,
initComplete = JS(
"function(settings, json) {",
"$(this.api().table().header()).css({'border': '1px solid'});",
"}"
)
)
)
result <- styliseDTNumericalColumn(data,result, "Count", 'steelblue', columnsName_original)
result <- styliseDTNumericalColumn(data,result, "sourceTimeNeeded", '#808080', columnsName_original)
result <- styliseDTNumericalColumn(data,result, "timeNeeded", '#808080', columnsName_original)
#result <- styliseDTNumericalColumn(data,result, "percentMatch", '#5fba7d', columnsName_original)
result <- styliseDTNumericalColumn(data,result, "percentMatch", '#4682b4', columnsName_original)
return(result)
}
#data persistance info
reportFileInfo <- function(filename, baseFolder = repository) {
paste0(
getSourcePath(filename, baseFolder), " of size ",
utils:::format.object_size(file.size(getSourcePath(filename, outputRepo)) + 1000000, "auto"))
}
fonts <- list(
sans = "DejaVu Serif",
mono = "DejaVu Serif",
`Times New Roman` = "DejaVu Serif"
)
#read_xml_to_list <- function(filepath, is.gz = FALSE){
# if(is.gz){
# temp_data <- paste0(repository, "data/delete.me")
# result <- xmlToList(xmlParse(gunzip(filepath, destname = temp_data, remove =FALSE)))
# Sys.chmod(file.path(temp_data), "777", use_umask = FALSE)
# unlink(temp_data)
# result
# }else{
# xmlToList(xmlParse(filepath))
# }
#}
#transpose_list_to_dt <- function(data_list){
# dt <- t(as.data.table(data_list))
# dt <- as.data.table(dt)
# dt[, (names(dt)) := lapply(.SD, unlist), .SDcols = 1:ncol(dt)]
# dt[, (names(dt)) := lapply(.SD, unlist), .SDcols = 1:ncol(dt)]
# names(dt) <- names(data_list[[1]])
# dt
#}
cleansingCorpus <- function(
htmlString, rem.html =TRUE, rem.http = TRUE, rem.newline = TRUE,
rem.nonalphanum = TRUE, rem.longwords = TRUE, rem.space = TRUE,
tolower = TRUE, add.space.to.numbers = TRUE, rem.country.begin = FALSE,
rem.nonalphanum.begin = FALSE, rem.space.begin = FALSE, fix.greek = TRUE
){
if(rem.html){text <- gsub("<.*?>", " ", htmlString)} # removing html commands
if(rem.http){text <- gsub(" ?(f|ht)tp(s?)://(.*)[.][a-z]+", " ", text)} #removing http destinations
if(rem.newline){text <- gsub("[\r\n\t]", " ", text)}
if(rem.nonalphanum){text <- gsub("[^[:alpha:]]", " ", text)} #removing non-alphanumeric
if(rem.longwords){text <- gsub("\\w{35,}", " ", text)} ##Removing words with more than 30 letters
if(rem.space){text <- gsub("\\s+", " ", text)} #removing excess space
if(tolower){text <- tolower(text)}
if(add.space.to.numbers){ #add space between number and letters
text <- gsub("([0-9])([[:alpha:]])", "\\1 \\2", text)
text <- gsub("([[:alpha:]]|[.])([0-9])", "\\1 \\2", text)
}
if(rem.space.begin){text <- gsub("^[[:space:]]*", "", text)}
if(rem.country.begin){text <- gsub("^EU", "", text)} #remove country codes from the beginning of the text
if(rem.nonalphanum.begin){text <- gsub("^[?–-]*", "", text)} #remove special characters identified in the beginning of text
if(rem.space.begin){text <- gsub("^[[:space:]]*", "", text)}
if(rem.space.begin){text <- gsub("^[[:space:]]*", "", text)}
if(fix.greek){
text <- gsub("ς", "σ", text)
text <- gsub("ά", "α", text)
text <- gsub("έ", "ε", text)
text <- gsub("ή", "η", text)
text <- gsub("ί", "ι", text)
text <- gsub("ύ", "υ", text)
text <- gsub("ό", "ο", text)
text <- gsub("ώ", "ω", text)
}
trimws(text)
}
cleansingEducationCorpus <- function(text) {
text <- gsub("\\.", "", text) #removing periods
text <- gsub("[[:punct:]]", " ", text) #removing other punctuation
text <- gsub("\\s+", " ", text) #removing excess space
text <- tolower(text) #changing case to lower
#removing accent from Greek
text <- gsub("ς", "σ", text)
text <- gsub("ά", "α", text)
text <- gsub("έ", "ε", text)
text <- gsub("ή", "η", text)
text <- gsub("ί", "ι", text)
text <- gsub("ύ", "υ", text)
text <- gsub("ό", "ο", text)
text <- gsub("ώ", "ω", text)
trimws(text) #trimming white-space
}
#This function removes dates that are "relics" from the xml parsing
removeDates <- function(text){
days <- "(Sunday,|Monday,|Tuesday,|Wednesday,|Thursday,|Friday,|Saturday,)"
months <- "(January|February|March|April|May|June|July|August|September|October|November|December|Months)"
date_form1 <- paste(days, months, "([0-9]|[0-9][0-9]), [0-9][0-9][0-9][0-9]")
date_form2 <- "\\?[0-9][0-9][0-9][0-9]"
text <- gsub(date_form1, " ", text)
gsub(date_form2, " ", text)
}
xmlToDataTable <- function(xmlData, itemNames){
itemList <- lapply(itemNames,
function(x){
xml_text(xml_find_all(xmlData, paste0(".//item/", x)))
}
)
names(itemList) <- xmlItems
as.data.table(itemList)
}
cleanCorpusHtml <- function(text){
unlist(lapply(text, function(x){
if(nchar(x) > 0){
# because nodes were starting with tag keywords in li, we relocate at the end so the information remains and the description
# starts with the main content
html <- gsub(">","> ", x) # add spaces after html tags so these aren't concatenated
xml <- read_xml(html, as_html = TRUE)
lis <- xml_find_all(xml, ".//li")
xml_remove(lis)
text <- paste( paste(xml_text(xml), collapse ="") , paste(xml_text(lis) , collapse =""), collapse ="")
text <- gsub("\\s+"," ", text)
}else {""}
}))
}
#Split equally a vector into chunks of number n_chunks
equal_split <- function(vct, n_chunks) {
lim <- length(vct)
fstep <- lim%/%n_chunks
idx_list <- list()
for(i in seq(n_chunks - 1)){
idx_list[[i]] <- vct[((i-1)*fstep + 1):(i*(fstep))]
}
idx_list[[n_chunks]] <- vct[((n_chunks - 1)*fstep + 1):(lim)]
return(idx_list)
}
#Function that takes a vector, and returns thresholded first 10 sorted indexes
getThresholdOrderRwmd <- function(vct, idVec, threshold = 1e-6, numHead = 10){
vct <- ifelse(vct > threshold, vct, Inf)
indexVec <- head(order(vct), numHead)
idVec[indexVec]
}
#Function to read xml nodes in description
maintainElements <- function(nodes, elementType = "a", attribute = "href"){
xml_attr(xml_find_all(nodes, paste0(".//", elementType)), attribute)
}
#Function to add results to datatable
elementsToDataTable <- function(result, elementType){
if(length(result) > 0)
data.table(elementType = elementType, attributeValue = result)
else
data.table()
}
#Function to retrieve urls from text
keepHtmlElements <- function(feedItem){
nodes <- read_xml(paste0("<div>", feedItem, "</div>"), as_html = TRUE)
rbind(
elementsToDataTable(maintainElements(nodes, "a", "href"), "link"),
elementsToDataTable(maintainElements(nodes, "img", "src"), "image"),
elementsToDataTable(maintainElements(nodes, "img-src", "src"), "image")
#All "img-src" are NA
)
}
#retrieve list of parameters in a http request query
getQueryParams <- function(url){
query <- httr::parse_url(url)$query
queryValues <- unlist(query)
queryNames <- names(query)
dat <- data.table(varName = queryNames, value = queryValues)
dat[queryValues != ""]
}
#Language detection
detectLanguage <- function(text, precision = 3) {
if (precision < 1) return(cld3::detect_language(text))
else if (precision == 2) return(cld2::detect_language(text))
pred <- cld2::detect_language(text)
ifelse(pred == cld3::detect_language(text), pred, NA_character_)
}
###################################################################################################
# Functions related to ESCO qualifications scrapping
###################################################################################################
# Returns a vector of the URIs in a particular results page for a given search query
getPageQualificationURIs <- function(locale = "en", eqfLevels = 1:8, pageNum = 1) {
resultsPageURL <- paste0(
"https://ec.europa.eu/esco/portal/qualificationSearch?",
"conceptLanguage=", locale,
"&searchTerm=",
"&eqfFilters=", paste(eqfLevels, collapse = ","),
"&page=", pageNum
) %>% url() # for Windows
resultsHTML <- read_html(resultsPageURL) %>%
xml_find_all(".//div[@class='content']") %>%
xml_children() %>%
xml_children() %>%
xml_attrs()
qualificationURIs <- grep(pattern = "http", resultsHTML, value = TRUE)
uriHead <- regexpr(pattern = "http", qualificationURIs)
uriTail <- regexpr(pattern = "');", qualificationURIs) - 1
substr(qualificationURIs, uriHead, uriTail)
}
# Returns total number of pages for a given search query
getNumOfPages <- function(locale = "en", eqfLevels = 1:8) {
resultsPageURL <- paste0(
"https://ec.europa.eu/esco/portal/qualificationSearch?",
"conceptLanguage=", locale,
"&searchTerm=",
"&eqfFilters=", paste(eqfLevels, collapse = ","),
"&page=", 1
) %>% url() #for Windows
numOfQuals <- read_html(resultsPageURL) %>%
xml_find_all(".//h1") %>% xml_text() %>% as.numeric()
qualsPerPage <- length(getPageQualificationURIs())
round(0.5 + numOfQuals / qualsPerPage)
}
# Returns HTML of a qualification based on its URI for a given locale
getQualificationHTML <- function(uri, locale = "en") {
paste0(
"https://ec.europa.eu/esco/portal/qualificationDetails?",
"conceptLanguage=", locale,
"&uri=", uri
) %>% url() %>% #for Windows
read_html()
}
# Parses an `xml_nodeset` object to extract useful data
parseXMLNodeSets <- function(xmlNodeSets) {
lapply(xmlNodeSets, function(x) {
labelText <- x %>% xml_find_all(".//p[@class='label']") %>% xml_text
allXml <- x %>% xml_find_all(".//p | .//ul")
varsIndex <- grep("class=\"label\"", allXml)
textData <- allXml %>% xml_text
limits <- c(varsIndex, length(textData) + 1)
data <- lapply(seq_along(varsIndex) , function(i) {
toPaste <- head(limits[i]:limits[i+1], -1)[-1]
paste(textData[toPaste], collapse = " ")
}) %>% as.data.table
setnames(data, textData[varsIndex])
titleText <- x %>% xml_find_all(".//h1") %>% xml_text
data[, "Title"] <- titleText[1]
data
}) %>% rbindlist(fill = TRUE)
}
# Extracts values from text structured in a "Label: Value" format
valuesFromLabeledText <- function(labeledText, label, otherLabels = c()){
cleanTokens <- labeledText %>%
paste("ENDLABEL:") %>%
cleansingCorpus(tolower = FALSE, rem.longwords = FALSE, rem.http = FALSE, rem.nonalphanum = FALSE) %>%
space_tokenizer()
label <- gsub("$", ":", label)
otherLabels <- gsub("$", ":", otherLabels)
otherLabels <- c("ENDLABEL:", otherLabels[label != otherLabels], label)
lapply(cleanTokens, function(tokens){
textStart <- which(tokens %in% label) + 1
textOther <- which(tokens %in% otherLabels) - 1
lapply(textStart, function(start){
fin <- textOther[which(textOther >= start) %>% min]
tokens[start:fin] %>% paste(collapse = " ")
}) %>% unlist() %>% paste(collapse = ", ")
}) %>% unlist() %>% paste0(",")
}
###################################################################################################
# Functions related to TF-IDF calculation
###################################################################################################
# The augumented frequency is used to prevent bias towards longer documents. This choice is
# justified by the fact that corpus size follows a roughly guassian distribution with respect to
# EQF level.
# The smooth inverse document frequency is used to prevent IDF from nullifying the TF-IDF in cases
# where TF can provide useful insigned on its own. That resolves the edge case where a word
# appears in low frequency in every corpus, but in a significantly high frequency in one corpus.
findTFIDF <- function(corpus, stopwords, normalize = "double", min_char = 1, by.class = "class", threshold = -1) {
tokensList <- strsplit(corpus[, value], " ")
names(tokensList) <- corpus[, get(by.class)]
tokensDT <- lapply(tokensList, as.data.table) %>%
rbindlist(idcol = TRUE) %>%
setnames(c("class", "term"))
tokensDT <- tokensDT[!term %in% stopwords][nchar(term) > min_char]
#inverse document frequency smooth
idfDT <- tokensDT[!duplicated(tokensDT)][, .(docFreq = .N), by = "term"]
idfDT[, idf := log(length(unique(tokensDT$class)) / (docFreq + 1)) + 1]
tfDT <- tokensDT[, .(term_count = .N), by = c("class", "term")]
if(threshold > 0)tfDT[term_count > threshold, term_count := threshold]
if(normalize == "double")tfDT[, tf := 0.5 + 0.5 * term_count / max(term_count), by = "class"]
if(normalize == "log")tfDT[, tf := log(1 +term_count)]
merge(tfDT, idfDT, on = "term")[, tfIdf := tf*idf ][, .(term, class, tfIdf, docFreq)]
}
#silence warnings pipe
`%W>%` <- function(lhs,rhs){
w <- options()$warn
on.exit(options(warn=w))
options(warn=-1)
eval.parent(substitute(lhs %>% rhs))
}
getStopwords <- function(locale) {
stopwordsLocale <- c(stopwords_getlanguages(source = "misc"), stopwords_getlanguages(source = "snowball"))
stopWords <- ""
if (locale %in% stopwordsLocale)
stopWords <- locale %W>% stopwords
stopWords
}
###################################################################################################
# Text translation
###################################################################################################
translateText <- function(sourceText, sourceLang, translationLang, batchSize = 4800) {
if (length(sourceText) == 0) {
return ("")
} else if (length(sourceText) == 1) {
return (requestTranslation(sourceText, sourceLang, translationLang))
} else if (length(sourceText) > 4800) {
return (NA)
}
sourceQueries <- gsub("$", "\n >", sourceText)
sourceQueries <- gsub("^", "< \n", sourceQueries)
queries <- data.table(query = sourceQueries, size = nchar(sourceQueries), batch = nchar(sourceQueries))
for (row in seq(nrow(queries) - 1)) {
cumulativeSum <- queries[row, batch] + queries[row + 1, batch] + 3
queries[row + 1, batch := ifelse(cumulativeSum > batchSize, batch, cumulativeSum)]
}
batchStarts <- which(queries[, size] == queries[, batch])
batchFins <- c(batchStarts[-1] - 1, nrow(queries))
batches <- lapply(seq_along(batchStarts), function(i) batchStarts[i]:batchFins[i])
pastedQueries <- lapply(batches, function(batch) paste0(queries[batch, query], collapse = "\n")) %>% unlist()
translatedText <- lapply(pastedQueries, requestTranslation, sourceLang, translationLang) %>%
unlist() %>%
paste0(collapse = " ")
translatedText <- gsub("\\s?<", "", translatedText)
gsub(">$", "", translatedText) %>%
space_tokenizer(sep = ">") %>%
unlist() %>%
trimws()
}
requestTranslation <- function(sourceText, sourceLang, translationLang) {
googleTranslateURL <- paste0(
"https://translate.google.com/m",
"?hl=", sourceLang,
"&sl=", sourceLang,
"&tl=", translationLang,
"&ie=UTF-8&prev=_m&q=", URLencode(sourceText, reserved = TRUE)
)
GET(googleTranslateURL, add_headers("user-agent" = "Mozilla/5.0")) %>%
read_html() %>%
xml_child(2) %>%
xml_child(5) %>%
xml_text() %>%
unlist()
}
###################################################################################################
# Text mining
###################################################################################################
findNGrams <- function(corpus, min_n, max_n = min_n, stopWords = NA_character_) {
ngrams <- itoken(corpus, tokenizer = word_tokenizer, progressbar = FALSE) %>%
create_vocabulary(stopwords = stopWords, c(min_n, max_n), sep_ngram = " ") %>%
as.data.table()
ngrams[order(-doc_count)][, .(term, count = doc_count)]
}
###########################################################################################################
## R version 4.0.5 (2021-03-31)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.2 LTS
##
## Matrix products: default
## BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=C
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] stopwords_2.2 stringdist_0.9.6.3 text2vec_0.6 DT_0.18
## [5] magrittr_2.0.1 rmarkdown_2.8 data.table_1.14.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.6 mlapi_0.1.0 knitr_1.33
## [4] RhpcBLASctl_0.20-137 float_0.2-4 lattice_0.20-41
## [7] R6_2.5.0 rlang_0.4.11 lgr_0.4.2
## [10] stringr_1.4.0 highr_0.9 tools_4.0.5
## [13] grid_4.0.5 xfun_0.23 jquerylib_0.1.4
## [16] htmltools_0.5.1.1 yaml_2.2.1 digest_0.6.27
## [19] rsparse_0.4.0 crayon_1.4.1 Matrix_1.3-2
## [22] vctrs_0.3.8 sass_0.4.0 htmlwidgets_1.5.3
## [25] evaluate_0.14 stringi_1.6.2 compiler_4.0.5
## [28] bslib_0.2.5 jsonlite_1.7.2
../00.core/00.02.base.functions.R completed in 0.15 seconds
filename <- "fields/model/fieldsCodeTFIDFWeights.rds"
qWeightedTokensList <- loadBinary(filename, inputRepo)
for(loc in names(qWeightedTokensList)) {
names(qWeightedTokensList[[loc]]) <- c("word", "code", "word_weight", "field")
}
Type of data: list.
Dimensions: ****.
Column Names: en, lv, et, hu, sl, pt, is, fr, lt, pl, el, es, it, ro, hr, de, sk, nl, tr, bg, cs, sr, sv, nb, da, mk, fi, mt.
With each field as document
filename <- "fields/model/fieldsTFIDFWeights.rds"
fWeightedTokensList <- loadBinary(filename, inputRepo)
names(fWeightedTokensList) <- names(qWeightedTokensList)
for(loc in names(fWeightedTokensList)) {
names(fWeightedTokensList[[loc]]) <- c("word", "code", "word_weight")
}
Type of data: list.
Dimensions: ****.
Column Names: en, lv, et, hu, sl, pt, is, fr, lt, pl, el, es, it, ro, hr, de, sk, nl, tr, bg, cs, sr, sv, nb, da, mk, fi, mt.
filename <- "fields/model/fieldsVocabulary.rds"
sortedVocabularyList <- loadBinary(filename, inputRepo)
Type of data: list.
Dimensions: ****.
Column Names: en, lv, et, hu, sl, pt, is, fr, lt, pl, el, es, it, ro, hr, de, sk, nl, tr, bg, cs, sr, sv, nb, da, mk, fi, mt.
Type of data: data.table, data.frame.
Dimensions: 917014, 4.
Column Names: index, locale, label, id.
1.load.data.R completed in 4.7 seconds
Tokenising free text entries for each language with multi-threading.
langInFreeText <- freeText$locale %>% unique
langInEsco <- names(fWeightedTokensList)
languages <- langInFreeText[langInFreeText %in% langInEsco]
freeTextPerLang <- lapply(languages, function(x)freeText[locale == x])
names(freeTextPerLang) <- languages
no_cores <- detectCores() - 1
cl <- makeCluster(no_cores, type = "FORK")
freeTextTokenList <- parLapply(cl, freeTextPerLang, function(x){
wordTokensUnknown <- word_tokenizer(x$label)
names(wordTokensUnknown) <- paste0(x$index, "_")
res <- wordTokensUnknown %>% unlist
res #nchar(res) > 2
})
stopCluster(cl)
2.process.data.R completed in 18.79 seconds
This process maps words retrieved from free-text to vocabulary terms of the EPAS backend. The Optimal String Alignment distance is used that allows more types of edit operations. These computations are expensive so a low level interface to C with multithreading is used.
stopwordsLang <- c(stopwords_getlanguages("snowball"), stopwords_getlanguages("misc"))
getMatches <- lapply(seq_along(freeTextTokenList), function(i){
language <- names(freeTextTokenList)[i]
voca <- sortedVocabularyList[[language]]
freeTokens <- freeTextTokenList[[i]]
if(language %in% stopwordsLang) freeTokens <- freeTokens[!freeTokens %in% stopwords(language)]
vocaIndexes <- match(freeTokens, voca)
res <- data.table(index = gsub("_.*", "", names(freeTokens)), word = voca[vocaIndexes])
res <- res[!is.na(index)][!is.na(word)]
res <- res[!duplicated(res)]
})
## Warning: 'stopwords(language = "el")' is deprecated.
## Use 'stopwords(language = "el", source = "misc")' instead.
## See help("Deprecated")
no_cores <- detectCores() - 1
cl <- makeCluster(no_cores)
clusterExport(cl, varlist=c("getMatches", "qWeightedTokensList", "indexChunks", "numReco"))
mergeLangData <- parLapply(cl, languages, function(lang){
library(data.table)
getMatchesLang <- getMatches[[lang]]
weightTokens <- qWeightedTokensList[[lang]]
res <- lapply(indexChunks[[lang]], function(indexes){
getMatchesLangChunk <- getMatchesLang[indexes]
getMatchesLangChunk[, voc_matches := .N, by = "index"]
dat <- weightTokens[getMatchesLangChunk, on = "word", allow.cartesian = TRUE]
dat <- dat[!is.na(code)]
dat <- dat[!duplicated(dat)]
dat[, code_matches := .N, by = c("code", "index")]
dat <- dat[ , .(total_weight = sum(word_weight), voc_matches, code_matches, field), by = c("code", "index")][order(index, -total_weight)]
unique(dat[, head(.SD, numReco), by = "index"][ , .(index, field, code, total_weight, voc_matches, code_matches)])
})
rbindlist(res)
})
stopCluster(cl)
3.process.data.R completed in 530.79 seconds
This process maps words retrieved from free-text to vocabulary terms of the EPAS backend. The Optimal String Alignment distance is used that allows more types of edit operations. These computations are expensive so a low level interface to C with multithreading is used.
stopwordsLang <- c(stopwords_getlanguages("snowball"), stopwords_getlanguages("misc"))
getMatches <- lapply(seq_along(freeTextTokenList), function(i){
language <- names(freeTextTokenList)[i]
voca <- sortedVocabularyList[[language]]
freeTokens <- freeTextTokenList[[i]]
if(language %in% stopwordsLang) freeTokens <- freeTokens[!freeTokens %in% stopwords(language)]
vocaIndexes <- match(freeTokens, voca)
res <- data.table(index = gsub("_.*", "", names(freeTokens)), word = voca[vocaIndexes])
res <- res[!is.na(index)][!is.na(word)]
res <- res[!duplicated(res)]
})
## Warning: 'stopwords(language = "el")' is deprecated.
## Use 'stopwords(language = "el", source = "misc")' instead.
## See help("Deprecated")
no_cores <- detectCores() - 1
cl <- makeCluster(no_cores)
clusterExport(cl, varlist=c("getMatches", "fWeightedTokensList", "indexChunks", "numReco"))
mergeLangData <- parLapply(cl, languages, function(lang){
library(data.table)
getMatchesLang <- getMatches[[lang]]
weightTokens <- fWeightedTokensList[[lang]]
res <- lapply(indexChunks[[lang]], function(indexes){
getMatchesLangChunk <- getMatchesLang[indexes]
getMatchesLangChunk[, voc_matches := .N, by = "index"]
dat <- weightTokens[getMatchesLangChunk, on = "word", allow.cartesian = TRUE]
dat <- dat[!is.na(code)]
dat <- dat[!duplicated(dat)]
dat[, field_matches := .N, by = c("code", "index")]
dat <- dat[ , .(total_weight = sum(word_weight), voc_matches, field_matches), by = c("code", "index")][order(index, -total_weight)]
unique(dat[, head(.SD, numReco), by = "index"][ , .(index, field = code, total_weight, voc_matches, field_matches)])
})
rbindlist(res)
})
stopCluster(cl)
4.process.data.R completed in 123.9 seconds
filename <- "suggestedFieldQualifications.rds"
saveBinary(suggestedQualifications, filename, outputRepo)
Datasource : /data/generic/jobsOutput/education/fields/data/suggestedFieldQualifications.rds of size 138.5 Mb.
Datasource : /data/generic/jobsOutput/education/fields/data/suggestedFields.rds of size 31.3 Mb.
5.save.data.R completed in 60.5 seconds
Completed in 740.53 seconds.