Abstract
Combining data of stratified CV and performing aggregations and statistical computations to constract anonymized tidy datasetlibrariesVersion <- c()
for(i in 1:length(libraries))
librariesVersion <- c(librariesVersion, paste(packageVersion(libraries[i] )))
librariesLoaded <- lapply(libraries, require, character.only = TRUE)
## Loading required package: magrittr
## Loading required package: DT
## Loading required package: ggplot2
## Loading required package: jsonlite
## Loading required package: parallel
## Loading required package: lubridate
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:data.table':
##
## hour, isoweek, mday, minute, month, quarter, second, wday, week,
## yday, year
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
../000.core/00.01.libraries.R completed in 0.84 seconds
sourceTimeNeeded <- c( sourceTimeNeeded, timeNeeded)
source.starting.time <- proc.time()[3]
## Base functions
# @authors kp@eworx.gr ako@eworx.gr
repository <- "/data/generic/"
getSourcePath <- function(filename, baseFolder = repository){
return(paste(baseFolder, filename, sep = ""))
}
readData <- function(filename, colClasses = c(), baseFolder = repository, header = TRUE, sep = "\t", encoding = "UTF-8", stringsAsFactors = TRUE, na.strings = c("", "NULL"), verbose = FALSE){
if(length(colClasses) == 0)
return (data.table::fread(input = getSourcePath(filename, baseFolder), header = header, sep = sep, encoding = encoding, stringsAsFactors = stringsAsFactors, verbose = verbose, showProgress = TRUE, na.strings = na.strings ) )
return (data.table::fread(input = getSourcePath(filename, baseFolder), colClasses = colClasses, header = header, sep = sep, encoding = encoding, verbose = verbose, showProgress = TRUE, na.strings = na.strings ) )
}
#rds for small disk space & fst for fast load
saveBinary <- function(data, filename = filename, baseFolder = repository, format = "rds"){
fileName <- getSourcePath(filename, baseFolder)
dir.create(dirname(fileName), recursive = TRUE, showWarnings = FALSE)
if(format == "rds") saveRDS(data, fileName)
if(format == "fst") fst::write_fst(data, fileName)
}
#alternative for rough read write operations
saveRDS_ <- function(object, file){
dir.create(dirname(file), recursive = TRUE, showWarnings = FALSE)
saveRDS(object, file)
}
#rds for small disk space & fst for fast load
loadBinary <- function(filename, baseFolder = repository, format = "rds", as.data.table = TRUE){
if(format == "rds"){return(readRDS(getSourcePath(filename, baseFolder)))}
if(format == "fst"){return(fst::read_fst(getSourcePath(filename, baseFolder), as.data.table = as.data.table))}
}
rowColumns <- function(data){
return(paste( format(nrow(data), big.mark=","), "Rows X ", ncol(data), "Columns"))
}
publishIncludeCss <- function(){
sourceFile <- "/data/jobs/wp41.analysis/000.core/include.css"
destinatinoFile <- "/data/tmpfs/results/include.css"
if (!file.exists(destinatinoFile)) {
return (file.copy(sourceFile, destinatinoFile))
}else{
return(TRUE);
}
}
#as the mountstorage is on memory make sure the asset include.css is there.
summariseTable <- function(data){
return(data.frame(unclass(summary(data)), check.names = FALSE, stringsAsFactors = FALSE))
#return(do.call(cbind, lapply(data, summary)))
}
factoriseCharacterColumns <- function(data){
for(name in names(data)){
if( class(data[[name]]) =="character"){
data[[name]] <- as.factor(data[[name]])
}
}
return(data)
}
############################
# https://rstudio.github.io/DT/010-style.html
#https://rpubs.com/marschmi/RMarkdown
capitalise <- function(x) paste0(toupper(substring(x, 1, 1)), substring(x, 2, nchar(x)))
styliseDTNumericalColumn <- function(data, result, columnName, color, columnsName_original ){
if(columnName%in% columnsName_original){
result <- result %>% formatStyle(
columnName,
background = styleColorBar(data[[columnName]], color),
backgroundSize = '100% 90%',
backgroundRepeat = 'no-repeat',
backgroundPosition = 'center'
)
}
return(result)
}
reportTabularData <- function(data){
columnsName <- names(data)
#columnsName <- lapply(columnsName, capitalise)
columnsName_original <- names(data)
result <-
DT::datatable(
data,
class = 'cell-border stripe',
filter = 'top',
rownames = FALSE,
colnames = columnsName,
extensions = 'Buttons',
options = list(
pageLength = 20,
columnDefs = list(list(className = 'dt-left', targets = "_all")),
dom = 'Bfrtip',
buttons = c('copy', 'csv', 'excel', 'pdf'),
searchHighlight = TRUE,
initComplete = JS(
"function(settings, json) {",
"$(this.api().table().header()).css({'border': '1px solid'});",
"}"
)
)
)
result <- styliseDTNumericalColumn(data,result, "Count", 'steelblue', columnsName_original)
result <- styliseDTNumericalColumn(data,result, "sourceTimeNeeded", '#808080', columnsName_original)
result <- styliseDTNumericalColumn(data,result, "timeNeeded", '#808080', columnsName_original)
result <- styliseDTNumericalColumn(data,result, "percentMatch", '#4682b4', columnsName_original)
return(result)
}
fonts <- list(
sans = "DejaVu Serif",
mono = "DejaVu Serif",
`Times New Roman` = "DejaVu Serif"
)
cleanJsonId <- function(txt){
txt <- gsub("\\.json", "", txt)
gsub(".*/", "", txt)
}
embed_data <- function(x= mtcars, filename= "file.csv", label= "Get data"){
# Create encoded Base64 datastream
encode_data= function(x){
saveMe <- getSourcePath("file.csv")
write.csv2(x, saveMe)
enc= sprintf('data:text/csv;base64,%s', openssl::base64_encode(paste0(readLines(saveMe), collapse="\n")) )
unlink(saveMe)
return(enc)
}
# String result ready to be placed in rmarkdown
paste0("<a download='", filename, "' href=", encode_data(x), ">", label, "</a>")
}
###########################################################################################################
## R version 4.0.5 (2021-03-31)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.2 LTS
##
## Matrix products: default
## BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=C
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] lubridate_1.7.10 jsonlite_1.7.2 ggplot2_3.3.3 DT_0.18
## [5] magrittr_2.0.1 rmarkdown_2.8 data.table_1.14.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.6 bslib_0.2.5 compiler_4.0.5 pillar_1.6.0
## [5] jquerylib_0.1.4 highr_0.9 tools_4.0.5 digest_0.6.27
## [9] evaluate_0.14 lifecycle_1.0.0 tibble_3.1.1 gtable_0.3.0
## [13] pkgconfig_2.0.3 rlang_0.4.11 yaml_2.2.1 xfun_0.23
## [17] withr_2.4.2 stringr_1.4.0 dplyr_1.0.6 knitr_1.33
## [21] generics_0.1.0 htmlwidgets_1.5.3 sass_0.4.0 vctrs_0.3.8
## [25] grid_4.0.5 tidyselect_1.1.1 glue_1.4.2 R6_2.5.0
## [29] fansi_0.4.2 purrr_0.3.4 scales_1.1.1 htmltools_0.5.1.1
## [33] ellipsis_0.3.2 colorspace_2.0-1 utf8_1.2.1 stringi_1.6.2
## [37] munsell_0.5.0 crayon_1.4.1
../000.core/00.02.base.functions.R completed in 0.07 seconds
Dimensions: ****
fileName <- "jobsOutput/demographDT.rds"
demographDT <- loadBinary(fileName)
demographDT <- demographDT[id %in% strataData]
Dimensions: 353518, 9
Dimensions: 1003707, 9
fileName <- "jobsOutput/education/predictions/cvPredictions.rds"
cvPredict <- loadBinary(fileName)%>%unique
cvPredict <- cvPredict[id %in% strataData]
fileName <- "jobsOutput/education/predictions/qualificationPredictions.rds"
eduPredict <- loadBinary(fileName)
Dimensions: 726865, 2
fileName <- "jobsOutput/education/fields/predictions/fieldPredictions.rds"
fieldPredict <- loadBinary(fileName)
Dimensions: 1582088, 2
fileName <- "jobsOutput/education/predictions/institutionPredictions.rds"
institutionPredict <- loadBinary(fileName)
Dimensions: 931310, 4
1.load.data.R completed in 35.21 seconds
fileName <- "jobsOutput/tidySurvey/educationStat.fst"
saveBinary(educationStat, fileName, format = "fst")
Datasource : /data/generic/jobsOutput/tidySurvey/educationStat.fst of 306,282,898 bytes.
3.save.data.R completed in 1.45 seconds
Completed in 68.76 seconds.
An Eworx S.A. DSENSE - A documented process for internal consumption.
– end of report –